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Abstract

*
&

The.paper presents a formalization of the principa}g c‘onlcepts of
the block diagram approach in systens theory using set theory. The
develvopment is azioma:tic. Starting from rvfesarovi;;s notion of a
general sysiem as an n~ary relation, (i) the concept of time is
introduced (i1) multi-variable input-output systems are forralized
and (33i) the evolution of such systems in time is studied both with

end withoul the property of non-anticipation, I% is demonstrated

in the latter case that the concept of state naturally a:;i_ses.
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mathematical models for cemplex systems. Moreover, he suggests that

RS

Introduction
In the companion paper, Professor Mesarovié indicates the exisience
of & gulf beitween the block diagran snalysis and:the analysis of detailed

general systens thesory can properly play a role in bridgingthis gap

‘ "1y preserving the simplicity of the block diagram while introducing

the precision of mathematics," As to achieving thie goal, he provides
us with several significant clues, Most important among these are

(1) that set theory is an appropriate mathematical vehicle (augzented
perhaps with some elementary concepts from abstract algebra) and (ii)
that fundamentally a systenm is 2 relation between input set and output
set, To these, we add (iii) essentially 2ll systems of interest in
engineering exist and operate within some reference-frame of time,

Fow, if the gulf is genuinely to be bridged, it is apparent that
the principai concepts of the block diagrem point-of-view nust be
incorporated into general systems theory, In fact, this must be carried
out very carefully so that one can nove éasily fron the dlock diagran
to the general systiems theory set-up, Ctherwise, the general systens
theory set-up certainly cgnnot serve as a bridge in the desizn process,
Thus, we arrive at the position that a fundamental task to be undertiaken
in general sfstems theory is ﬁhc formalization of block dizagran concepts
using sect theory,

Our purpose in 4his ariicle is to pressni such a foﬁ:alization and
to discuss a.;tsult within the framcw;rk of this formalization which we
bave recently reported (1], Here; we shall attenpt to make our present-.
ation undsrstznd
Moreover, we stall be very divecily conceTned with defenlins the position

that our fommalization of ithe dlock diagran concents is 2z reasonable one




-2”

intuitively, Hence, we shall devoic conéidcrabic attention to the
interprotation of various mathematical objects within our formalisn,

Another remark about our overall approach is in order, The block
diagram concepis we seek.to formalizc {such es systen, input, output,
state, e'l';c.) are veTy general concepts to begin with, Their moaning
in engineering, while not conpletely precise, is reasonably well-
understood, It is possible, therefore, to procecd in en axiomatlic
fashion with the development, i.e, {o go from the general to ihe more
specific, To do so is both attractive and pedagogically dangerous,
It is attractive because there is associated with an axiomatic theory
a poverful mechanism for properly identifying basic concepts. It is
dangerous because things become abstract, Therg is; we feel, suificient
uncertzinty as to which concepts in systeme {l+2y are bhasic that an
axiomatic approath is Justified despite the absiractiness, MNorecover,
es Profcssor‘Mcsarovié kas pointed out, ths use of such a general
systems thcory-development in the enginecering design process appears
to occur in 2 flow which goes from the less specific (block diagran)
model to the more specific {detziled mathematical) model, Thus, the
theory mzy be of grealest uiility if it is constructed axiomatically.
Notation

In order to render the presentation concise, it is necessary to
essunc sone basic ideas Ifron set theory; nanmely, the concepis of sets,

functions, and relations znd the elementary facts about thcsc.l Moreover,

we shall use the standard notations regarding sets, funciions, and

1 - \ . oy .
A1l of the essential naterial is presented in chapters 1-3 of
Supres T2},
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Telations without introduction,

Some parifcular notations we adept are the following: Ve denote |
unit sets without brackeis, ordered sets (i.e, p—tuples) with paren—
theses, and bz‘dina:cy sets witﬁ curly - bracketls., If S is a 2~axy relation,

i,e, a set of ordered paire, then the sots

s = ix| (3y)e syt
and RS =%y | (30): x5/}

are, ryespectively, the domain and the zgggé of S, Here

xSy Q—'% (x,7)€8. In general, then, S < 9SX RS (whers
bsv(ﬂs = (xy)| xe s e ycRsT) and, if SS X ¥ Y. then
Bs€xand RST Y,

The composition of two Z-ary relations S ard S' is the set
(5* 0 5) ={(x,2) ) (ay): x5y & y5'2}

vhichis itself a 2-ary relation. From the definition, 8(S' o 3) <€ &S

and R(S' o S) & RS and, in particular, the condition S < ©5' implies

(s" 0S') 08 = 8" o (S o8)

In the casc that 5:X-) Y and S':2-) W are functions, ($* o S) is a function
and o
B(s' o8) =%x| xex & 5(x)e 2}

Moreover, for 211 x& K(S' o §8),

(5' 0 5)(x) = §'(5(x))

We shall reserve the word transfomation for a funciion which naps a

gel into itz21f. If f and g ave 4ransformations on the set 7y then

S(f og) =¥, Indecd 49 £:1Y-7Y and g:Y-3 ¥, then (fo0cz)Y-;1,

]

Thusz, the coapozition of tuo transforaations on 2 sed ¥ is a transloraaticn
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on Y. Even more, the composition of two {ontoj 1:}; 1:1 onto)
{transformations is {onto; 1:1; 1:1 onto),

Finally, §f X and Y are éets, we write Yx to denote the class
of all functions which map X into Y, i.e,

T air]ex—r}

For example, if Y is a set, then YY is the class of all transformziions

on Y, -

Time Sets

‘Recall our carlier stated position {iii) above; namely, that
“essentially all systeus of interest in engineering exist and operate
within some reférencc¢frame of time,® This asswaption will have a
major effect on our formalization of the systems concepts. In parti-
cular, it will be through the explicit introduction of a mathematieal
representation for time that we put structure into the concept of a
systen bc&ond that asserted by Professor Mesarovie in his article, Our
approacﬁ will be to introduce a specizl kind of a set to represent time,

Now, to represent tine in-ensinecring ﬁodcls for sysitens, one ordin-
arily uses one of the fo;iowing.four sets (i) the sct R of rcal numbers
(ii) the set R+ of positive real numbers (iii) the set I of integers
or (iv) the set J+ of positive integers., For our purposcs, none of
these scis is actually suitadle, In fact, to choose any one of these
i1s to lose an inportant degrec of generality, That is, to choose Rk or
R+ can at best lead us to the so-c2lled. "contiruous—tine” sy tens
and with I or I+ we shzll have foraalized only the "discrete—-tine"

systens, Fither cheice would severely unde

44
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and I+ share and which are impor;ant in representing tinme, This wiil
8llow us to discuss Ycontinuous-iime" systéerms and "discfetc—timc" systens
.aimultanéously, i.e, by specialimation, we can explicitly exhibit either
case, The essential features-of a time set apparently inclide (i) a
simple ordering (the incqﬁality relation i in the case of R, R+, I,

and I+) and {ii) an algebraic operation {ordinary addition in the case
of R, R+, I, snd ‘_I+). A concept conveniently satisfying these reguire~ 7
ments is the concept in abstract algebra of an ordercd group. Since
nany of our readers moy be unfamiliar with this céncept, we repeai.; the

definition here and develop some tools to be used in our later wozﬁ:}z

An ordered pair of sets (T,+) is a group if (+) is an operation on
T (i.e. 4T 4:7 X T-3 T) such that (i) for 211 %,%,t"E 7T, '
(t +t') +2" =4 + (t' + £") (ii) there exists sone OET {called an
identity) such that for 21l t£7, (1 + 0) = (0 + t) = t and (iii)
for every t€T there exists sone £12 1 such that
(t + t"}) = (thl + %) = 0. In general, it can be showm that the idcntit&
1

element 0 is unicue in P and each element t = is unique given 4, More-

over, if (1,+) is a group, then for 211 t,%'€ 7, the ideniiiies

(1)1 2t oand (14 $0)T 2 e

+ t"l hold, ;
For exanple, if G is the sct of 211 1:1 onto transformations on a
sct A, then (G,0) is a group vhere (o) is conposition of transformations.

In particular, the identity function on A (i.e. the set &g = {(2,2) | 2 £ AY)

serves 2s idsniity in G and, if g£ G, then
-1 .~
e ={(a(2),a)! acal

which is 2n eleuent of G since g is 111 onto A, Yore faniliar exanples

I3

of grouss are (v,5) and (3,:) where R is the 24 of real nwhers, 1 is
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the set of integers, and (+) is ordinary addition of real numbders,
If (7,+) and (P',+'; are groups, then a nap h:T~» T! (into) is a

honororphism if for all t,t'€ 7, B(t + t') = B(%t) +* B(t'). An iso-

ft

morphisn is a homomorphisa which is 1:1 on T ento 1, (7,+) and {T1,+')

are homomorphic [isomorphic} if and only if there exists a homomorphism

[isomorphism] h:T—> T*, Thus, homomorphic and isomorphic groups are
sets which are algebraically similar,

A very basic result from group theory which we shall use c_:ttensively
is the notion of the "Cayley representation" of a group. If (T,+) is &

group and t€ T, then the t-left translation on T is the transfommation

:T—> T such that for all t‘éT, et(t') =% + 1% The Cayley represent—

°¢
ation of (‘I‘_,+) is the ordered pair (CT’ o) where (0) is composition and
Cp = §c,b\ t€T§. It can be proved in general: If (T,+) is a group,
then (CT,'o) is en isonorphic group {47, In particular, the rap vhich
takes t -3 ¢ ié an isomorphism, It follows for all t€T, that (i)
eo{t) = ¥ (vhence ey is the identity function on 1) (31)
(e,‘;)”1 = ¢,~1 and (iii) e, is 1:1. Aleo, of course, for all ,t'€ 7T,
Ciitt T By O €4yl CT ic thus a set of 1:1 onto transfornaticns on T.
Our finzl prelininayy is to introduce the concept of 2 group with
a simple ordering and consider dbriefly the Cayley represent=tion of such
a2 group, An _9_1_‘51:3_9_@ srouv is a group (Ty+) toseither with 2 subset UC T

such that (i) the set {U, O, u!

Y is a partition of Ty where
- -
Ut e gt teud

and (ii) +:UXU->U, If (i,+) is a group ordered by U, then the relation

(<) on T such 4hat
4 VSN -1 ty - 17 -~
t{ 4 (S (t + t )l:; U, (t,t':‘l‘)

saticsfies (3) 1440 & 4 A - >4 44" (4i) ¢4y tott Y 11¢ t

gy s o A B i A
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and (iii) t<4 & (1" + )< (4" +4') for all ¢,t4,t"ET, C
Thus, (<) is what is termed a left invariant, simple ordering of T [2].
Finally, it turns out: U = {t]0<i},

Now, if {T,4) is & group ordered by U, tuen ithe Czyley represent-
ation (Cpro) is ordered by the set Oy = {e, | 16U, In this case,
8ll of the iransformations e,€ G rreserve the ordering (<) on T,

In fact, since (< ) is left invariant, for all 1,t',4"ET wo have
et & (4 + )< (1t + t")<=>et(t')<ct(t")

'l‘hus; ‘CT is a collection of monotonic (i,e, order-preserving) 1:1 onto
transformations on P, ¥ow, if (<) denotes the ordering of CT

induced by CU, i,e,

ed ey € (e oo )egy

then we haQe '
t<tt &> et< iy (t,t'C 1)

In fact,
= 4"1 P ' -
<t (U 2 t)eus e~ 1€ Oy > (e-1 0 ct,)c_ Cy

-1 .
<« ((ct) o ct,)é ¢y €7 et< ey

Hence, the isonorphism h which tekes t-D e, is also order-prescrving,

L
Such an isonorphisz is called an order-isonorphign [37,

Of ecrse, two Inporisnt exanples of ordered groups ave (i)
the edditive group of real nuabers (R, +) which is ordercd by the sct
of positive rvals R+, and (ii) the additive group of intecgers (I,+)
whica is ordexred by the set of positive integers I+, In each case,
the sinple ordering induced is ﬂ:e ordinary strict inequality relation

ncept of an ordered group encimnrasses all

8]

<. Thus, we sece thai the ¢

s~ a S P H 3 N Yy R
four o iro usual tive sein, I4 Is Juportant 40 note 4hat sioihin
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Ceneral Time Sysienms

Renceforth, we can deal straight on with the fomalization of
block &i;gram concepts; Our first task is to set down a working
definition of a general time éysfcm (which the reader will recognize
to be‘ a specialization of Professor Hesarovic!s definition of 2 system

as a general relation), Heving elsborated on ihis definition somewhat

Sé
3
S
:

(in particular, having carefully identified in systewms theory terninology
our interpretation of the various sets associated with a general time
systen), our approach willlbe to axdonatically develop the concept of
state for our systems, As in[1] , our main point is to show that states
2nd siatle tfansitions in systens thoory arise naturally in an sxceedingly
general case, In fact, the only axiom required is the property of non-
anticipation, Since one is not far wrong to equate non-anticipation

of a systen with its "physical realizability", we thus infer that all
physically realizable syctenms have states and functional state transitions
and, even more, thesc state transitions obey a well-known rule

(called the "scoi-group" properiy [57). More explicitly than we were
able to ﬁccomplish in "17, we denonstrate that the state concept in
systens theory is co:plofcly interwoven with the concept of the

evolution of an Inpul-output relation (3.e. a systen) in time, This

would secem once and for all to justify the study of staics and state | é
transitions in systems theory as a means of anzlyzing how a systen will

aprear at verious future Instanis of tine,
Ve proceed to our working definition of a gencral iime systen:

Henceforthy let G = (7,4,U, <) be an ordered group, i.e, let (7,4) be

2 group orlered Yy the 2uh3st U and let (<) be the sirple ondarins of T

induced By U, If n is a2 poritive intezer and (Al,lz,...,i ) is an
n

U, U
X A,

B-tuple of seis, then any rnon-eaply relatien § g;(Al Xoeae K AnU)

ol R A -1

is an n-2:7 G-rysien,  Here, 25 usuil,
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1 PR S, 1
= H -2
Ay Qsi] 51074, ]
. ‘ ' . oty Uy o Uy v
and ( X) denotes Cartesian product, If § "'(A'l X A7 X ... X Ay )
33 a G-syetem, then the sctis AI’AQ""’An are called spaces of 8, the
- sot U is the time set of S, and the identity element O of T is the

Btarting time of S, n is the degree of S, A G-system § is discrete-
3

time if (Ty+) is order-isomorphic” with the additive gwoup {I,+) of

integers, It is continuous-time if (T,+) is order-isomorphic with
the additive group (R,+) of the real nuzbers, Evidentl&, no (-systen
is both discreie~time and continoxw-timé. ‘ 7

Let S be an n-ary G-system, If 14i¢n, then the iwth

projection of S is the sot
=5 3 ] : 3 ’. r 5%
i  P;s 1Si\ ("Sl)"‘(}si-l)(gsiﬂ)“’(‘sn)' (sl,...,si,...,sn)( s}
S is imBr'OEcr if
S PisXP,s Xeoad P8
Evidently, if S is an n-ary G-system and 142¢n, then P;8 is a uwnary

G-system. In general,

< T X
s < 1S f’zs x...X'Pns

Finally, every unary G-systcm is improper,

L Thus, we proyose the n-a2ry G-systen as a fomalizziion of the con-—
cepl of 2 gencral time systen, In doing this, we note (above) that
n-2ry G-sysiems can be contiruous-time or discrete—{ime if we specialize

the oxdered group G appropriately, Finally, in identifying the class

of inproyer n-avy G-syetens, we distinguish that sudbelass whose elements

are triviol in a 10la2%1c0u2) gence, We rerark that the condi {tion

. -
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(i.e. that S is improper) slways bears the interpretation that the
sets P& ‘are "independent” of easch other (with respect to §), This

is a useful coﬁcept 4o be able to formalize,
.Time Objects
He can by specialization of the concept of a éenoral time systen
arrive at Profcssoi Hesarovice's concept of the "objects" of systems,
In Ou; case, these "objects" are "time objects, i,e. seis of
(gencralized) time functions, We defines
. AsetVisa C-object if and only if V is & unary G;system. If

Y is a C-objecl and vg Vy, then v ie a (-time function, Evidently, then,

& se? ¥V is & G-¢cbject if and only 3if V is nonenpty end there exists a
sot A such that VS AY = 3v |viU—2A}. A G-time function is in fact
then a function and, in particwlar, a function with domain U, Now, if
§ is an n-ary G-system and 1<ién, then‘PiS is a C-object and its
elcmcntg are (—iime functions, Thus, an n—aéy G-systen is a collection
of n-tuples of C-iine functions, .
Tiﬁc objects and their elements can be "conposite" objects or eleuents,
i.¢, they can somctiines be 1cduced to conponentis: 0] V'E3AU be a G-object.
IT n is 2 positive integer, then V is n-ary if and only if there cxists an

n~tuple of seis (Al’AQ""’An) such ihat

A's Aj_ﬁ A2 X oees X.Ah

In other words, a G-object is m—ary if its spoce is a set of n-turles,

n is the dinension of Vo If AS A X A, 7 ... X A 2nd 1834 n, then
. A

vonnn oen A s the functiion ci:k-? Ai such that

A
o5(ayzyeyz)) « o2y

e ————
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If V is an n-ary O-ocbject and vEV, then the conposition (of o v) is
the i-th component of v, Also, the sect
A .
Oi(V) ={c; o vivevs
is called the i~th component of V, (1€3i< n).
Evidently, if VE (&4 X &5 X «00 X 47 16 2 Gucbject, then

e (V)€ 7. Eenco, G,(7) is stself a G-cbject. ‘Wow, €,(V) may or

may not be & unary C-object. For example, if V& (A1>< (A'&lx A22) X A3)U
then Ce(V) is 2——ary.4 Finzlly, in the given case, we note

(o} o v)1U >4 and for a11 $€T,

w(t) = ((ch o v)(1),(ch 0 ¥I(1)yerey(c] 0 ¥)(¥))

Hence, the concept of the components of & G-tinme function is no different

than the concept of the components of any other function.

A Duality
As nzy alrcady be apparent to the reader, there exisis a basic duality

between the concepts of an n-a2ry G~system and an n-ary G-object vie the

notion of components of functions, This is a uscful duzliiy Tor sone

purposes, Ve indicate the duality by defining:

IfvVeE AU is an n-2vy G--object, then the dusl of V is the sci
S = {(ci [o] V, C; (o] V,..., c!t o] V) ‘VC‘V’S

<A . . U U U. I {
T < < YR < ; oo
Clecarly, ifT V ¢ (Al;\ A,y X X An) y then S 4 X A, X X &

Thus, S is an n-21y G-systen, Also, for all i (lgién),
f’is - ci(v)

Now then, evidently, every n-ary G-object thus has a (unique) dual which

4 The vnzbisuity of the dincngion ef a2 G-obhis

s T - R - 3oL a0 - < F - s a-
foct that Couviszion proluct of srts is not zn aszizozis

-~ 2 v b2}
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iz an n-ary O-system, The converse is also true, That is, if S is an

n-ary G-system, then there exisis 2 unique nh-ary (~object V such that

U v i
> X aee X A be a C-sysiem.

'S = Dual(V), In fact, let ST 4% A
,...,en)e S, associate the map v _:U~7 (A.lx A, X, Xﬁh)

Then, ii‘-s = (31,52
such that

v (£) = (5(8),8,(4) 500 0r8,(4)), (te )

and let
Vaiv leesT

Then, S = Dual(V). Thus, there exists a 1:1 correspondence dbetween
the class of n-axry C-objects and the class of n-ary G~systems associated

with 2 given space relation AGAIK AX oo XA

Inpui--Outpui Systems

With the above prelinminaries out of the way, we can begin the
axiomatic development of our formal concept of a system Bo as 1o make
it appear mcre and more like the mathematical models of real systems
which we deal with in engincering, One of the most important problems
in goncral systens theory is the investigation and delineation of the
principle of czuse—and-effect as a prenise underlying the behavior of
rezl systeos, Our fommalized concept of 2 general tine systen, the
n-ory G-sysiem, is nol revealing as it stands of oause-cffect

(inpat-outrut; stinulus-response) behavior except by the mosi liberal

extrensly gereral sei-up, we 2llov ourselves the frecdom of azn 2xiomatic
intreluction of fornal proreriies to render our sysicms more ewi more

interprei=ble as cause--efiect (or as Zzdch [5] puts it, oriented)

entities, 1In tre process, we can theorine about ithe "univerzaliiy" of

L O P TN .
v 4 atie

The first siep in our delineaiion of the cauzc-a2nd-effeci idea

ey
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in systems theory is to specialize the n—axy G-system to the "input-

output system" and estadlish a second duality concept; namely, universal

repreécnta;tion of general time systems as input-output systems, This
is a matter of introducing the concepis of "'inputs" and Youtputbsh,
The basic methodology we employ is due %o Mosarovid {'61 .

If G is an ordercd group as sbove, 2 C-inpui-oudput syctem is any

2-ary O-system, i,e, S AVX BV, In this case, the G-objects AV ana

BU are called, respectively, a cause object and an effect cbject for 5,

The set A is an input sp _: and B is an output space for S, The sets

bs =3x](3y): x5y}
RS ={y{(3x): xsv}

(which are unique for S) are called the input set and the output set

of 8. In general, if S is a C-input-output system, then

bs = -Pls
£s =~P23
and sc Os X Rs

i.e. an input-ouiput sysiem is: a relation on ity input sed and iis
output szt, Thus, we salisfy ono of the basic positions (dus to
Mesarovié) which we stated at the outset,

We next’ forualize the concept of a multi-verizhle inrui-output

systen which is perhzps the most fundamenial of the dleck diagran

" concepts: I S is a Cdinput-sutput gysten, then S is sinzle-variadle

if 2nd only if boith £8 and AS are unaTy C—objecls, IT S is not single.-

variable, it is multi-wariadle, Thus, 2 multi-varizable G—-inpui-ouinut

systen Is 2 rlztion of
SS(AXL(...\(A)UX(‘»:XBX YB)U
1 e S | Tl 2" "

where either n> 1 or

e
13
s
-
(o]
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Sé(ﬁx AX .00 X An)Ux (B; X By X oo X Bm)U is a (possibly’

single-variable) G-system, then the set Ci('ﬂ 8) is the i-th input port

of 8 { 1€4€ n) 2nd the set cj(Rs) is the j-th output port of S (1< j< m).

§ is isolated if and only if

Dual(85) = (55X € 8) X e X 6 (S5)

wing tad N atodih 6 e g Pl iskefia

S is non—cohesive if and eonly if

b

Pual(R 8) = € (X 5) x €,(Ks) X ... X ¢ (RR5)

It is immediate from the definition that every single-variable G-systiem
is isolated and non-cohesive. Moreover, we see a multi-variable G-system
S is isol~ted [non—cohesive] if and only if Dual(Ss) [}}ual(ﬁs)]is

an improper G-systcen, |

Our interpreuziion of the properly of isolation is, of course, that
all of the inpul poots of the system are "independent" of each other,
Similarly, non-cohesion is the property that all of the output ports
are "indcpondent" of each other. Cohesion and a rumber of other concépts
related to the concept of Fnieraction are discussed at lengith in the
companion peper by 1. Biria,

Ye consider next the nuestiion of whether or not in gone definite
sense the input-output systens arc "rich" in the class of general time
systens, We forazlize the issus with the following defirition:

Let S< AU BV be a C-irpute.output systen vith A < Al\' A, X eee X )h
13( B,X oo X B, If 8' is an (n+n)—$:y G-sysica, then $ is

en jrovl-ouirut rerresaniaiion for S if and only If

S A A . A B B B -
xSy €D (c1 O X3C€y 0 Myiee3€ 0 X,6) 0 F4C, O ¥yeuuyC O y)< st

.
Newy i1 18 2 corcoentunlly Inporiant vaauld dthat in dne =~iv

5 £
ettt e nt s Ceervados o
[ CIY ) 1Rt AT YUV S

- %

Y Faooan dnpuleocutpul rerseaeri-oticon,  The nroos

of this fart is given By Yocavovie in [(6) ., The iscu- is si~ply choazin: i
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a cause object and an effect object for the representation system, That
is, if S & AIU')( Azu'/\" cee X AnU, vo choose some intcger m (1< m<n)
3

d L] (3 M 1=
and oct A A1>< A2X.. )(Am and B Am+17< Am+2)<...>( A . Then,

the relation ' S AUX BY such that

A A A B B B ) .
xS'y' =) (6] © X065 0 Xyu0uy6 0 X,0) 0 Y36, 0 ¥yueuye, OFIES

ie an inpui-output representation for S, Thus, in the sense of
rcprcsentaﬁility, input-output systems are, in fact, "rich" in the
class of general time syctems, PFor this recason, we can justify
restricting further attention to input-output systems, That is, if we

do not diszllow the multi-variable case, then our finding in an

~

important sense shall be valid for the class of 211 n-ary G-systiens,

Operations On Systens

There are a number of different ways in vhich systems cun be
couvined to yield other systemu, In the case of imput~ouiput sysiens,

these arice in iwo distinet ways, (i) through interconncctions of

systens such as the serien, parallel, end feedback interconncciions,

and (53i) throush fermalizing the evolulion of a given sysien in tine, w

. . . I

Intcrconncctions of systzns, of course, are primary concepls in the i
’ )

block dizgran dencription of systems, The latter conceplt is not, IJIn o

this scetion, we ghzll foruzliue the seriec interconnection of sysiens &
end {he concepd of M"sectioning” a given sysiem (which is (ii) above). :

The parallel and feedbuck interconneciions eon also be foruzlized for

C-input--ouipul srsiens, wul pley no role in our developmznt of the
conceypt of siate; hence, trey are not nceded,
Let us Tirod addrais ourcalves to the conceapt of the caries '
intercorreziice off Inptiecuisit syeterar Heneaforth, led 3 and 3
be fi:03 zete o (25 9r70re) let G = (Ty4,U, <) be 2 ziven ordercd

roun, Then dcfinc/5 {0 be 4he clans of 21) C-input--oulrutl syctens
P b - -

Fe

S
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vith input space A and output space B, i.e. lect ¢

= {s]seax 8’3

Then, if S and S' are arbitrary G-input-output systems, Tim the

series interconnection of S and S' is simply the composition relation
(S' 05). Thus, 3£ S AUX B’ end ' < ¢V X DY, then

(st o8)< AUX DU. In the parlicular case that A =« C 2nd B = D,

(s' 05) < aAYx B%, Therefore, for a1l §,5'¢d, (S' o S)¢d

Thus, the class/J of input-output systems is closed under series

interconnection,

Now, ectually, for proper ir;terpro:tation in the engincering context,
we must qualify the definition of seriecs interconnection slightly. .
Thie is because enginceoring sysiems must generally satisfy an inten-
connectability condition; namely, RS < OSs'. Thus,. we Tormalizes
If S and 8' arc C-input-output systems, then the series interconnection
(S' o 8) is proper if and only if s &8s, Clearly, whenever (S' o S)
is a proper scries inierconnection, then (as we noted above)
5(s'eos ) = ®s.

The concept of "goeotioning" a given inpuff-outpt;t systen is soue-
vhal nore difficult to fornalize than the notion of tho series inter-

connection of bystens: I?f scd end te U, then the {(normalized) t-section

of 8§ ie the ¢lation

5, = 5__(::t 0 ¢,y¥, © et)\ xSy §

¥heze x, = 1x(81)) Fe<er]

Yo = 1(thv(e ) fecerd

= : r
and ¢ 70 T ig the {-leld Lra

151ation on . Alco, if S¢ :l,, defire

So = S vhere 0 is the idenlily o2 7,

e . evm ——— -

.

R T T gl

g



Now, .Sxt = §t) t(t'} o Therefore, since x:U--) A and ¢ :T-> 7.

t
and ¢, is monotonic, it follows that (xt ° ct):U»—> A. Ing fact,

¢ t

tc B (:c,c ° ct) & e & ct(t')é 2 ’ft‘*"’ ter & t<e (1)

&S tVET & t4t + 4 €2 $'€T & (t + 0) (¢ + t7)

. & t'ET L0 E) tC U
i.e, ﬁ(xt ° et) = U, Similarly, we sece (yt o et):UﬁB.‘ From this,

it follows that

5,S AUy 8¥

Finally, then, for a1l S€ & and all t€ U, 5.6 (1) In vords,
S
St is that part of the systen/defined for time greater than t shifted

backvards in time to the starting time 0. Under interpretation, St

is what tho system S "looks like" starting at time t,

Wow, from the fact that stEJ s there evidently exists a function

i SxX U —)/.{ (where U = UU 0) such that

,'Y(S)t) = St ..

Ve shall call % the motion - ind , Now, very importantly, 3t

e b,
.

can be proved that 7 satisfies the following proporties; nanely,

(4) +(s,0) 5, (564 )
(11) WSyt + 1) « W0 (s,1),80), (5ed & t,t¢ T)

o n F A S et

: (The condition (ii) is of course equivalent to St = (Sg)ee)
Thus, the motion ™ is always available for characlerizing the

"evolutioa” of an input.-oulrul sysicn through tine, {1 can be scen that

this notien s inportont concapiually in engineering,

The operations of series interconnection and seetioning are not

T g o W R e R b ne

unrelated, That §s, i S 2nd 5120, then for all t£ U,
1 a) =S¢
(s' o L),c S', 08,

In facti,
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x(8* o S)ty<=> Fw)(@v): u(s' o S)v & x = u o oe &y =v, 0c
< Fu)(3v)(Aw): uSw & wS'v & x = ugoe &y =:vt oe¢
&> (Av): xst(wt o °t) & (wt o °t)s'§y
&> x(S't o St)y

t
L]

Thus, the t-scction of the series interconncction of two systems in

is the series intcrcomxcctioﬁ of the t-sections of the systems,

Finally, then, on the class of C—input-output gystcns 4 g WO

it i it B R

have iwo basic operations; nanely, (i) scries interconnection

o:zfXd-?A{

i,e. the motion 7: 4 X T4 (vith (U,+) being a semi-group with
identity).

vhich is a semi-group operation) end (ii) sectioning
’

Finally, thesc two opcrations are connected by the

conditions
(i) ar(s,0) = s
(3i) 7 (Syt + t') «7(7 (5,1),t")
(3ii) 7 (8" o 5,t) =7 (8%t) o w(s,t)5

Non-Anti ci patory Functions .

Perhaps the most fundamental properily of input-outpul systems

s the properly of non-anticipation, Roughly speaking, en inpui-output

cysten is non-anticipatory if the "present value" of eny oulput of the

systen does nol depend on any "future values" of the corrcsponding

systen input,. This property is, of course, en intuitive ona well-knoun

in engincering, The jmporiance of the concept lies in the fact that

non-aniicipation ic equatible with (or at least a nececsary econdition

for) the "physical rezlizability" of the system, Of coursie, a beticr

wazy to s2y lhe sane thing is: Non-anticipation is a projexty which is

alnost universally valid fox the clans of pathenziicerl nolels enployed

Crre B s v s = - - . . - Ce a e e e e s —— e R

fhur, 4he seteuy (4 y750) is 2 (¢ noie) module 2lgabiaically,
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to describe real physical systems.

Now, in attempting to formalize the intuitive concept ‘(above) of
& non—anticipatory systém, we encounter an im:nc:iia.tc problen., The
above statement of non-anticipation implies the system is a funclionj
yet, this docs not seem to be a necessary condition, FHence, 2 non—
trivial task is to formalize the concept of 2 non-anticipatory f;ysteni
in the case of input-output systems which are not funciional. We shall
here solve the preblem by carrying out the functional case completely;
then, in the light of the results, we shall propose a definition in
the non-functional case.:&

Proceeding with our axiomatic development, then, we; define: If

S¢€ A_O", then § is 2 non-anticipatory function if and only if (1)

S is a function, i.e, S: 58D RS and (ii) for 211 x,x'€¢ 55 and all
teU, i

- t .t '
x5 = X'y = 8(x)(t) = s(x*)(t)

wvhere

e flvx(e)) ] octrge ]
%t

xt¥ - §(enx{11))] 0t}

oz

kegarding ithis definition, we realize that condition (3i) could be

replaced by ihe eguivaleny corndition (3i7') for all x,x'C 23 and

i 81l t€ U, ' :
xg = xg > (sGI) - (S(x))g
As wo Pave praviously si=ted, it turns out that neneaniicipaiion
is the avicnatic cornersione on which the concept of siaic in sysions
theory c=n be fourndad, We dagzin to make clear this fact swihen we exanine

the clonure projaoriies of ihre ovaratiocors on sysiens previously: introlusad

L - -

4]
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in the special case they are applied {o non-aniicipatory functions.
Henceforth, let %! be the class of all G-inpui-outpul systens

with input space A and outrut space B which arc non~anticipatory
functions, i,e.

n = {S I 5 < A.Ux BU & & is a non-anticipatory function}

[3

then, 7 < 4 .

He notc two things: PFirst, if 8 and §' are non-anticipatory

functions, then their series interconnection (S' o S) is a non-antici-

patory function,

In fact,. since S and S' are functions, (S' o 8) is

& function, Morcover, for 21l x,x'€¢ H(5' o §) and all teU,

sb st (s060)Y - (s NE = ss(x))(1) = 8H(s(x1))(4)

<> (8" o 5)}{(x)(t) = (3" o 8)(x*)}(¥)

Thus, (S' o S) is non-anticipztory., In particular, if §,S'C. %, then
(St o 8)C 7/ and, hence, o: X7 =7, Second, if S€ 77 and 1C U,

{then St need not be a non-anticipatory function, In fazci, we readily
sce thatl St is not even & function in gereral, Thus, we find thet the
_secctions of

& non-2miicipeiory funciion are in general enticipztoryl
Av first, this is perplering bul a bit of further invesiigation unravels

the rysicry. We defls

< iinel

If 8 is a non—zniicipaiony funclion, iT x € Ss, and 1¢ U, then {he

__________ 3 is {if¢ reletion
X« % L]
S, = {(x', o2 47, oc¢c ‘ x'Sr & x', = x }
G R LY - 0" %
~ X ; ] ;
Also, for 211 x € £3, dolinc 50 = S, Theny using the saue arguenis
2s we ennloyed bilove din indrolucing the seciions of 2 sysion, we find

Bl

- ——

|
i

o § 3 e tid bt ke ssmsRaadiel bRy |
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Hence, if €71, x€8 S, and t& I}, then Sié 4{ . lore imnportanily,
it can be proved that S: is a non~anticipatory function, In other
words, S:é"?z . Finally, we note

s, = U sf ' -
and, fzence, we Tind that if S is a non—a:iticipato:y function and

$t£U, then S

4 bas a natural decormporition into nén—-anticipat'oxy
functions; namely, the set |
Hg(t) = {8} | xe os5%
Fow, from the fact that .52672 g 3t follous that wer can consiruct
another function (sinmilar to the wotion of §) rrhich describves the
evolution ¢f a non-anticipatory fun'ction in terms of its non-anticipatory

eppearances, First, we define the relation D € 77X AUX U such that

(5,%t)ED <> x5S

Then, there evidenily exists a funelion 31D~ % such that

x

T(8,x,t) = 5%

T we shzll call the branching .. in X .Very imporiantly, it czn be

proved that 77 salislics the Jolloving properties whenever the eppropriate

inages ¢f 177 are defincd:

(i) 7(3,x,0) = 8

(i3) x5 = x0b =) T(5,%1) -7(5,x',1)

(33i) 7(S,=,% + &1) :«.‘T(T‘(S,:-;,t),xt o et,t')

X
t+t!

Thusy Tor 2 nos-aniicipaiory funelion 8, the brarching T is

s Cooy . . VX
(The corditicn (3ii) ie of ecurse ecuivaleni to § J() 1% ‘)

= (St )

alw:ye =voilahlie fop (recing Aho evolution of 8§ in tiro in doris of
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The Concept of Siate

Having examined the non-~anticipatory functions, we wish to set
downt a definition for a G-input-output syston which is non—onticipatory
but not a function. In the light of the foragoing, it is natural to
define:

1f s€d ,' then 8 is a non-anticipatory system if end only if there

exists some non~anticipatory function S'€ 77 and some $& U such that

= 8¢
SS‘t

In words, an input-output system is non-anticipatory if it is a section
of a non—_mticipatéry function, Under this definition, we note every
non-anticipatory funciion is a non-anticipatory sysiem, i.e., if SE€ 7 ,

then (trivially)

SnSo

New, very inporiantly, we discover that under this definition
non—anticipatory systems have states and 211 of the usual nachinery
of siate iransitions in systems theoxy [57:

let SG/_}/'ac a2 nen—anticipatory systen, i.e, as.sume S = S't where

5'¢ 71 . Then, the set
oy X .
74 (%) =ia't l 1565'3
is 2 sel of imitial states for 5. Clearly, M (1) € 70 end

and, fron the latter, it follows that for all x & <Y end 21) y € 3

xty 7 (39): v w500, O RGw)

1 T ——— 8 o ot e et s e S A b 4 1
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From these definitions, we sec (i) eves, state of a non-anticipatoxy

pystem is a pon-anticipatory func’ion 'ii) e non-aniicipatory function
¢

" is a non-anticipatory system with precisely one initial state and (3ii)

& norn—anticipatory systeé is an>input~9utput system vhich at some earlier
time hagd p.recise},y one initial state, .

Ié $€ 4 is non-anticipatory (i.e. S = ', with S'CT ) and t'eU,
then St,é 4 isa non~gnticipatory system, i,e. every section of a

non-anticipatory systen is a non-anticipatory system. 1In fact,
- t Y o gt
Sgr = (S1y)ys = 8%y 0

Moreover, then, the set

N (b + t1) “5133;1-,-! xeﬁs'}

is a set of initial states for S_‘h,. Also, 715|(-t, * )€ ﬂz' and, in fact,
t “
Nge= U T (t+1¢)
tey °
X, © et

Fow, using the property that S:+ g = (S:) t? s we see that

Mg, (t + t‘);{fi‘, \ fé?lS,(t) & xe Or§

Thus, the se?l ’ﬂs,(t + t1) of initiel states for §_, can be "conpuicd

~ S,

o

directly from the set ‘/Zs,('t) of initial states fo

If § is & nor—aniicipatory sysien as adbove, then tre branching T

inM is c21led 2 stz2te iransition function for 8, Asvwe noted beforc,
T has the properiies,

(i) T(s,%0) =5

t
(4]

(3i1) 2 (35,x,% = t") =.-’I'('T(-S,_\-,t),xt ) ct,t')

-

(i1) xj = 1'; =2 T(8,x,t) = T(8,x',1)

Thus, by (11), 42 si2%: 4vanriticns of 8 are zn2da in a non-oviicinad oy

fashion, Also, by (iii

™
b
[
+
»

- L -y -~ Ty - - ]
y 11y 0bzy 2 seniesroupn proiariy,
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Finally, every non-anticipatory system has an output function {513

namely, the function ¢ :D~7 B such that

T (5,7,%) = S(x)(%)
That is, in general, it can be proved: If (S,x,t + t'}E D, then

(5,x,t)E€ D znd (s’;,xt © 6 yt')ED and
- sX 1
s(x)(t + tv) .»_‘_'(J:qt o et)(t )
Therefore, the function G~ has {the properiy
T(S,x,t + £) =<I‘(":.‘(S,Jc,*l*.),x,e oe,t")

for a1l (8,¥,1 + t')E D,

Sunnmarizing, then, if sed is 2 non-anticipatory system, then

- there oxists a subset 7'< 7, a relation D& ] X v ¥ U, and

two maps T:D — 71 and G :D~¥ B such that

(1) x5y & @)(¥4): y(t) =a(f,x1), (rent)
(ii) G (fyxt + ') =0 (T (5% t),%, © et,t'), (re])
(333) T(f,x,4 + $1) "r(’r(f,x,t),xt o e,‘,t'), (£rc7t)
(iv) xg = x'g =) T (f%,4) =G(f,x',t), (rem7)

() ¢ - b9 T (n,%,4) ST(L,x",t), (£¢71)

Thus, every non~anticipztory sysiem has a set of initial stales, a scit
of si=zlcs, a'siate {ransition funciion, and an output function,

Acitinovledromend
This reuoarch hasg boen suvported by the OfTice of Naval Research
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